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Weakly Nonlinear Conductivity of Random
Composites: A Series Expansion Approach
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We present a series expansion calculation of the bulk effective coefficient of
weakly nonlinear behavior in some continuum composite conductors and in
simple cubic random resistor networks. The expansion is in powers of the
relative difference between the linear Ohmic conductivities of the components. It
is carried up to third order for an independent random bond network and a
diagrammatic scheme is used to aid in implementing the calculation. For con-
tinuum composites, only the first term of the expansion can be calculated
explicitly without detailed information about the microgeometry. Such informa-
tion is difficult to acquire and even more difficult to exploit.

KEY WORDS: Composite materials; nonlinear conductivity; series expan-
sion.

1. INTRODUCTION

The phenomenon of weakly nonlinear electrical transport in a macro-
scopically inhomogeneous or composite medium has attracted increasing
attention since 1985 (see ref. 1 for a recent review). In particular, much
effort has centered around the problem of the bulk effective weakly non-
linear response in percolating metal-insulator or normal metal-super-
conductor composites, where the contrast between the properties of the
two components (ie., the ratio of conductivities) is infinite. The critical
behavior of the weakly nonlinear response near percolation was also dis-
cussed for finite contrast composites.'>* In this paper we are concerned
with determining the effective nonlinear conductivity of a weakly nonlinear
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random composite far from the percolation threshold and with a finite con-
trast between the component properties. Stroud and Hui‘¥’ showed that the
bulk effective weak nonlinearity coefficient of a composite is proportional
to the effective resistance fluctuations, 1/f noise,>® in a linear composite
that has the same linear conductivities and the same microgeometry. It can
therefore be calculated, to first order in the nonlinearity, from an
appropriate moment of the local field distribution in such a linear com-
posite. Based on this perturbation approach, Zeng et al.® proposed an
effective medium theory for the calculation of the effective nonlinear
response. We present here a different approach, namely an expansion in
powers of the relative difference between the Ohmic conductivities of the
components.

In weakly nonlinear materials the local constitutive relation between
the electric current density and the electric field is

J(ry=o(r) E(r) + b(r) |E(r)|* E(r) (L.1)
where
b(r) | E(r))* <ol(r) (1.2)

The nonlinear term is the lowest order correction to Ohmic behavior in
materials that have a centrosymmetric crystal structure. In a composite
made of such weakly nonlinear conductors the Ohmic conductivity ¢ and
the nonlinearity coefficient b may have different values in each component.
The composite will exhibit a bulk behavior characterized by bulk effective
coefficients ¢, and b,," ¥

() =0E)+b,[{E)I*(E> (1.3)

where the angular brackets denote a volume average, {E) = E, is the
externally applied uniform electric field,

1 |E/(r)|?
aFT/jdVa(r) VAL (1.4)
and
1 |E,(r)]*
be—?/JdVb(r)W (15)

E,(r) is the local electric field in a corresponding linear composite of the
same microgeometry and the same local Ohmic conductivities but with
b(r) =0 everywhere. An expression similar to (1.5) was previously obtained
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for the lowest order nonlinear correction to the bulk effective superfluid
density in Hell filled superleak as a function of the local superfluid
velocity.®

The discrete analog of (1.1) for a two-component random resistor
network (RRN) is

I=gV+b|V?V (1.6)

where g is the Ohmic conductivity and b is the nonlinear conductivity coef-
ficient (g=g,, b=>, in one component and g=g,, b= b, in the second).
The effective conductivities may be defined by the relation between the
average current per bond J; and the average voltage per bond ¥V,

10=geV0+be|V0|2V0 (17)

As in the continuum case, the effective nonlinear conductivity coefficient b,
can be calculated, to first order in the nonlinearity, from the fourth
moment of the local voltage distribution in the corresponding linear
network* 1%11) weighted by the local values of b

1 4
be_ﬁgb,,Va (1.8)

which is the discrete analog of (1.5). N is the total number of unit cells in
the network and the sum is taken over all the bonds of the network. Here
V, is the voltage drop on the conductor « when all the b, vanish and an
external voltage is applied in the direction of one of the principal axes, such
that (1/N) 3, V,=1. This sum may be taken either over all the bonds of
the network or only over the bonds parallel to the external applied voltage.
Clearly, b, is sensitive to local fluctuations in ¥ which are induced by the
inhomogeneities of g. Our aim in this paper is to find a more explicit form
of this dependence by expanding b, as a power series in the local Ohmic
conductance fluctuations.

2. THE CONTINUUM CASE: NONLINEAR COMPOSITE
MATERIALS

The locall Ohmic conductivity of a continuum composite will be
written as

a(r)y=0y+da(r) 2.1)

where g, 1s some constant value, most conveniently chosen equal to the
Ohmic conductivity of one of the components. da(r) is the local variation

822/82/5-6-8
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of the Ohmic conductivity, which assumes a different value in each compo-
nent. It can be written as

da(r)=Y 6,(r) 6o, (2.2)

where the sum is over all the components and &,(r) is the characteristic
function of the component i, equal to | inside it and to 0 in the other com-
ponents. The nonlinear conductivity coefficient can be similarly expressed
as

b(r)=3.0r) b, (2.3)

It is clear that the effective nonlinear conductivity b, of Eq. (1.5) is sensitive
to local fluctuations in the electric field. These fluctuations are induced by
the inhomogeneity of the Ohmic conductivity do(r), since b, depends only
on the Ohmic fields. The explicit form of this dependence can be found by
expanding b, as a power series in the linear conductivity variations do(r).
This expansion can be symbolically written as

b,={b(r)> +0b,+8%,+ --- (24)

The zeroth-order term of this expansion is simply the volume average of
b(r) over the whole composite. It would be the exact result in a system
where g(r) =0, =const is uniform, in which case also E(r)=E, will be
uniform. When o(r) is not a constant, then the Ohmic electric field can also
be formally expanded as a power series in do(r),

E(r)=E,+0E(r)+6%E(r) + - (2.5)

where E, is the volume-averaged electric field applied on the composite.
A similar expansion can be written for the electrostatic potential

D(r)=Dy+ 0D(r) + 5°P(r) + --- (2.6)

where Eg= — V&, and §"E= —V3§"®.

In inhomogeneous materials da(r)#0 in parts of the volume. This
gives rise to local fluctuations of the electric field and to additional con-
tributions to the effective nonlinear conductivity coefficient. The first- and
second-order contributions are

E,-SE(r)

4
5bl,—T/JdVb(r) 5 (2.7)
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and

(Eq- OE(r)
Eg

Eo-52E(r)

12
2p == 1 4
6°b, % '[ dV b(r) E?

deVb( r) (2.8)

If we assume that the volume-averaged electric field is applied along the
x-axis and its magnitude is equal to unity, E,=2,, then the expansion
terms of (2.7) and (2.8) can be simplified,

ob, =%j AV b(r) é, - SE(r) (2.9)
and
5% =£jdVb(r)(é .5E(r))2+ijdVb(r)é SPE(r) (2.10)
' 1% ~ vV x .

To calculate the first-order contribution (2.9), we have to find an explicit
expression for JE. This can be done by applying the differential operator
o0 to the divergence equation of the electric current

V- J=0 (2.11)
where the Ohmic current is given by J(r) =o(r) E(r). From this we find
V- 6J=V - (6dEy+0,0E)=0 (2.12)
This gives a first-order differential equation for JE,

v.sge _Foy so_ &Voo_  8da/ox

Oo Oy (2

(2.13)

Substituting (2.2), we get a Poisson equation for the first-order term of the
electrostatic potential

V25q>=ai V.Y 6,(r)éa, (2.14)
0 i

The boundary conditions satisfied by d® are 6® =0 at the two condenser
plates and 06®/0x =0 at the walls. This is just Poisson’s equation for the
potential produced by an electric polarization field,

(2.15)
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Equation (2.14) can be formally solved using a method introduced by
Bergman.'? In this approach, each pure component of the composite is
divided into a large number of small grains and an index g is assigned to
every grain. A f-function can be defined for every grain, such that 6,(r) is
1 when r is inside the grain g, and 0 otherwise. The first-order term in the
expansion of @ can be written as a sum of the contributions of all the
individual grains

5(15:2 b, da, (2.16)
H
where

V2d5,,=iV_\.0,,(r) (2.17)
gg

A solution to Eq. (2.17) is given by

L VOl (2.18)
dngy ) |\r—r'|

"

This solution does not satisfy the boundary conditions of the exact solution
0® of Eq. (2.14), but the correction that should be added to it in order to
repair this fault would be @(1/V) if both r and r' are well away from the
surface.!'” Consequently, this solution can be used to represent @, inside
the grain x4 and in its vicinity, but not over the entire system. We will use
it to calculate & within a certain grain # only by evaluating the self-field
of that grain and the fields produced in it by other grains within a finite
volume V, surrounding it. This is the “near-field contribution.” The field
produced by the other, faraway grains can be calculated if the composite
is assumed to be macroscopically homogeneous. In this case, the actual
polarization P can be replaced by its average value {P) given by

é,
(P> _4n60;pi56i (2.19)

where p; is the volume fraction of the component i. We will call the field
produced in this way the “far-field contribution.”

We will now evaluate the near field contribution to the first-order term
in the expansion of b, by substituting the solution (2.18) into Eq. (2.9).
This gives

Vi0.r)

, (2.20)
lr—r|

4 1 ,
[5be]near = T/J dVb(r) Vx Fﬂ'o %’ 60!1 J‘ av
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Substituting
b(r)=)6,b, (2.21)

we can now use the near-field restriction u€ ¥V, to perform a partial
integration over x’, which finally gives

4 1 1 " ’ 1\2 l
(06 Jnee =3[ 4V g [ AV S S 5.60,0.0) 6, VY T

v uebV, |r—r’|

(2.22)

If we restrict the sums on # and v to a particular component or pair of
components i and j, then since b, and do, are constant, we have to sum
first over the product of 8-functions

girnr)=Y Y 6n0,.r) (2.23)

vei peVy,j

The function g;(r, r') is a truncated correlation function, which is equal to
0 for large separations |r —r'|. For separations somewhat smaller than the
smallest radius of V,, this function tends to the probability of finding r in
the component / and r' in the component j. For r=r' it satisfies

gy(r, ")=Pi5ij (2.24)

If the composite system has a rotational symmetry that is either isotropic
or cubic, and if we choose V, to be a large, but finite sphere (i.e., much
larger than the grain v, but much smaller than the composite system itself)
centered around the grain v, then g;(r, ') will have the same symmetry. In
this case, the double integral

1 i 7 2
T/I de AV’ g,(r, ') V2 (2.25)

r="]

will be independent of the axis along which the double derivative is taken,
and we can rewrite it as

1 47
= —?p,-d,-j (2.26)

1 1
- 14 re AN v 24
Vja’ de gy(r,r') 3 \Y% =7

Using this result in Eq. (2.22), and summing over the phases i and j, we
find for the near-field contribution

4
[6bc]near= _"_Zpibiaai (227)
30045
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The far-field contribution to the electric field JE at the center of the sphere
V, is just the Lorentz local field calculated with zero average field and with
a polarization given by Eq. (2.19),

SE=~

30'0 2,: pioa; (2.28)

Therefore, the far-field contribution to Eq. (2.9) is

[5be]fa,=%‘0 <; p,.b,.><2i: p,ﬁa,-) (2.29)

From Egs. (2.27) and (2.29) we finally get the first-order term in the expan-
sion of b,

ébe=i <<Z pibi><z Pi50i>_zpibi5ai> (2.30)
3a, i i i

For the special case of a two-component composite with components
denoted by 0 and 1 we find the simple result

4
6b, = _3—‘P|Po(01"00)(b|_bo) (2.31)
To

A similar calculation of the second-order contribution &%, is
impossible without detailed knowledge about the microgeometry of the
composite. This can be seen if we try to calculate the first term of (2.10).
Substituting the near-field and far-field contributions to JE into this expres-
sion from (2.18) and (2.28), respectively, we find

12
— | av e, -sE)?

12 do, (Vi) , 1 >2
_ Vdeb(r) (V,\.;, re j TV 300; pids,)  (232)

There are three parts to this expression; one is quadratic in the far-field
contribution, another is quadratic in the near-field contribution, and the
third is mixed. The calculation of the far-field term is straightforward. It
gives

2

12 1 212
VJdVb(r) <E;piéai> =9T‘(2)<Zi: pibi><zi: P150i> (2.33)
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The mixed term includes an integral that is identical to the one obtained
in the calculation of the first order-term. It can be solved by the same
method, for a system of an isotropic or cubic rotational symmetry,

1
=l

1 av’
5<Zp’5a>VJdVJ4 Y, X b,d0,0, r)0(r)V§|

v uev,
= —% <Z Pi50i><z Pibi(sai> (2.34)
o\ i

The near-field term cannot be calculated in the same way. After substitu-
tion of Eq. (2.21) and the use of the near-field restriction u € V, to perform
a partial integration over x’', we obtain

12 ba, _ (V.0
= j dv b(r) (; Vs 4V )

|r —

12 I\
=7jdV\é:b < de' Y 64r)0,(r')dc,V >(2.35)

uev, * I rl
Inside the triple integral there appears a three-point correlation function

0,(r) ¥ 0,(r) ¥ 6,0r") (2.36)

neV, leV,

In contrast with the two-point correlation function gy(r,#') which
appeared in the first-order term, this function cannot be easily simplified in
a way similar to (2.24). Therefore, it is impossible to calculate the near-field
contribution to (2.32), and to the other term of (2.10), without a more
detailed knowledge of the microstructure. Explicit information is required
about the three-point correlation function of the composite material.
Calculation of higher order terms in this expansion involves yet higher
order correlation functions.

In summary, the series expansion for the nonlinear conductivity of a
weakly nonlinear continuum composite with either isotropic or cubic sym-
metry can be carried out explicitly to first order in the conductivity varia-
tions. The result to this order is

b, —(b)+—<<2p, ,)(2': piéai)—;p,biéai) (2.37)

Calculation of higher order terms requires detailed knowledge of the
microgeometry of the composite.
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3. THE DISCRETE CASE: NONLINEAR RANDOM
RESISTOR NETWORKS

The series expansion approach introduced in the previous section can
be applied to random resistor networks (RRN). These networks provide
the simplest type of model for a randomly inhomogeneous conductor. In
this section, we try to exploit that simplicity in order to develop a
systematic expansion for the macroscopic nonlinear conductivity coefficient
of a random cubic network of conductors g, g, as a function of g, /g, and
for arbitrary values of p,, the probability for any conductor to be g,. It is
hoped that the simplicity of the model will allow us to carry this expansion
to higher orders than was possible in the more complicated case of a
continuum composite.

We consider a three-dimensional cubic RRN where every bond
between nearest neighbor sites independently assumes one of the two

n
FENE NN I
L)

Fig. 1. Schematic representation of the RRN between the parallel plates of an infinite con-
denser. In this drawing, the distance between the plates is L = 6. The sites m and k are surface
sites.

Vk
V=z=L

—_—

v

m



Weakly Nonlinear Conductivity of Random Composites 1337

conductances g,,g, with probability p,, 1 —p,, respectively. A series
expansion for the Ohmic conductivity of such an RRN was developed by
Bergman and Kantor.'® We adopt their notation and use a method which
is based on this discrete model to develop a similar expansion for the
weakly nonlinear conductivity. The network we consider is assumed to fill
the space between the infinitely large plates of a parallel plate condenser at
a distance L from each other and is subjected to a potential difference also
equal to L (see Fig. 1). Kirchhoff’s equations for the potentials ¥ at all the
lattice sites are given by

2 g(Vi—V)=0 (3.1)

where the sum is over all the nearest neighbors to the site i, and where i
is any internal site (surface sites are excluded—there the potential is either
0 or L). The conductance g; which is either g, or g,, can be represented
in the form

g, =86;(1 —ub)) (3.2)
where
u=1-% (3.3)
8>
1 if g;=g
0,7—{0 it g,=g, (3.4)
and

1 if i,j t neighb
6 { if i, jare nearest neighbors (3.5)

o otherwise

0, is a random bond-variable that is analogous to the characteristic func-
tion #,(r) which appears in the continuum composite case. Using this
representation, Kirchhoff’s equations become

Yeg(Vi—=V)=u} e,0,(V.—V)) (3.6)

Bergman and Kantor introduced the discrete lattice Green’s function y/ to
solve this set of equations’®). It is defined by

2 eg(vi—7))=du (3.7)
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together with the requirement that y/ vanishes when i is a surface site. The
quantity y’ is the discrete analog of the potential created at i by a point
charge at /. Using it, Eq. (3.6) and the accompanying boundary condition
can be transformed into a set of equations for the voltages across the
individual conductors'®

Va=za+uzrap0pVﬂ (38)
B

The indices a and f are bond indices, i.e.,

V.sV;=V,—V, Z,=2;— 2 0,=0 (3.9)

if

where z; is the z coordinate of the site i and z, is equal to unity if the bond
o is parallel to the applied voltage and is zero otherwise. Here

FaﬂEril.ijyi_yi “)’;'*' Y (3.10)

is a Hermitian matrix which is the discrete analog of a dipole-dipole inter-
action between the bonds (ij) and (Im)!!®

Equation (3.8) can be written more compactly in a symbolic notation
as

V=z+ulV (3.11)

This equation can be formally solved and the solution expanded in powers
of u,

1
Ve=s—e—z= 2 .
gy (1 +ul@+uT0re+...)z (3.12)

from which we get
5Va=u(r92)a=uzrup9ﬂ2/; (313)
B
52Va=u2(1"01"02)a=u22 I’m,,HI,ZI’ﬂ,Hyzy (3.14)
B ¥
etc.

The effective weakly nonlinear conductance per bond of the RRN is
given by Eq. (1.8),

] 4
be—ﬁgbal/a
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where V, is given by Eq. (3.8) and N is the total number of unit cells in
the network. Its expansion as a power series in # can be formally written
as

b,=<{b.> +0b, +3%,+05%,... (3.15)

As in the continuum case, the first term in this expansion (the zeroth-order
term) is simply the volume average of b, over the entire system. The next
three terms in this expansion are

Zb z, 0V, (3.16)
) ——Zb z OV )2+iZb 4 (3.17)
e_N " a“a -3 N ~ azm o .
and
24 36 4
3 =7 3, 7Y 2 - 3
o be—Ngbaza(éVa) +N§ba2a6Va§ V,,+N§baza(5 V, (3.18)

The nonlinear conductance of the bonds b, can be written in a way
analogous to Eq. (2.3), using the characteristic §-function (3.4),

b1=(b|—b0) 01+b0 (319)
With this representation, the expansion terms can be calculated following
the approach of ref. 13 using three identities satisfied by the matrix
elements of I

Y Ipz;=0; }: T =Twi Tw=173 (3.20)

In order to calculate the expansion terms in the case of a random network,
we must average over the distribution of #,. This averaging is necessary in
order to get an expansion for the ensemble average of b,. We discuss
infinitely large networks, in which y! depends only upon the vector separa-
tion between the network sites i —1 and I',; depends only on the vector
separation of the bonds « and # and on their relative orientations, and not
on their absolute locations. Consequently, the ensemble average of each of
the terms (3.16)-(3.18) also depends only on the orientations and vector
separations of the bonds and we can omit the sum on one of the bond
indices, at the same time omitting also the 1/N factor. Thus, in each of the
above expansion terms we have to evaluate correlation functions of the
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independent random variables #,. Each term will include a correlation
function of the type

(6,646,

For independently distributed bonds, each of these correlation functions
may be decomposed into a sum of J-functions multiplied by polynomials
of p;, e.g, ¥

{by> =p
<9091>=P%+P1(1_P1)50| (3.21)
$60,0,> = pi+ pi(1 — p\) (o1 + 002+ 612) + pr(1— p )1 =2p )by

where a symbol such as J;, is equal to 1 if the bonds 0,1 are equal, and
to 0 otherwise.
Given these considerations, the first-order term (3.16) is

4
b, == bz, Y I'ybyz,
N &L

4u 4u
=W(b] —bo) Xp:zaearaﬂgﬁzli'f'ﬁbozpZaraﬁgﬁZﬂ (322)

Applying the first relation of (3.20), we find that the second term in this
sum is equal to 0. The first term includes a second-order correlation of 8-
functions, which we substitute from (3.21). This gives

6bc=4u(bl _bO) Zza( aﬂzﬂpl(l _pl)éa/l
B

=4u(bl —bO)pl(l _pl)zmrmza
=3up,(1—p,)(b, —by) (3.23)

This result is identical to (2.31), which was obtained for a two-compo-
nent continuum composite.

Using this method, we calculated the first three terms in the expansion
b,—<{b)=3Y7_,a,u". Every correlation function which appears in this
calculation is multiplied by a set of I" matrices of equal or lower order. This
gives various products of I" matrices which have to be evaluated. Many of
these products are found to vanish due to (3.20). To simplify the calcula-
tion of the coefficients a,,, it is useful to characterize each contribution by
an appropriate graph (see Fig. 2): We assign a vertex to every independent
bond index «, a line segment joining two vertices represents the matrix ele-
ment I,z and the factor z, is represented by a dangling segment connected
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Orderinu Contributing graphs Total contribution of the graphs
n=l é 4p(1-p)(b;-bg Tog
n=2 é 4p(1-p)(b-bg T

é é 16p,(1-p)(1-2p)(0y-by Ty

12p(1 'pl)[bo+P1(bl'bu)]2| 2 r;nz Z

(24[by+p,(b,-by(1-2p)+40p, (1-p, )(b,-by)
xp(l-p) ).:.zol',;:: Z)

[44Q1-2p)+4(1-pIp{(1-p,)(b,-b) T

é 64p,(1-p )(1-6p,+6p})(b,-by) [0

Q Q 108p{(1-p,)'(b-b) T T 215, 2,

Q 3605548, (B -bIR (1-p)(1-29) Ty T2,T57 7
Q 36[bstp (b 'bo)]Plz(l'Pl)z, A 2

4P?“'P|)(b|'bt) T

Fig. 2. All nonzero graphs and their contributions to the coefficient of 4", 1 <n<3, in the
series for b,.

to the vertex a. All these graphs are multiconnected, ie, they cannot be
separated into disconnected parts by removing a single line. This rule
follows from the fact that such an isolated line would be associated with a
single sum of the form of the first relation of (3.20), which vanishes."®
Another rule is that any vertex that has only two lines attached to it can
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be ignored, and a line that includes any number of such vertices can be
represented by a single factor I',;. This follows from the idempotency
property of the matrix I” [the second relation of (3.20)].

The first three coefficients are obtained by summing the appropriate
graphs from Fig. 2. The first-order term includes a single contribution
which was explicitly calculated above. To calculate the second- and third-
order terms, we need to evaluate non trivial sums involving matrix
elements of I'. The quadratic sum which appears in the second-order term
is the discrete analog of the three-point correlation function integral, which
we were unable to calculate in the continuum case. The third-order term
includes, in addition to such terms, also a cubic sum which is the discrete
analog of the four-point correlation function integral. Due to the simple
geometry of the cubic RRN model, these sums can be evaluated numeri-
cally using series expansions for the matrix elements I',;, developed in ref.
13. The results obtained are

Y a2z, =0.1648 £ 1074, szfil,zm=0.03422i 1073 (3.24)

The expansion presented here can in principle be improved by
calculating more terms, although, beyond third order the number of graphs
proliferates to such an extent that it becomes very difficult to keep track of
them all.

4. DISCUSSION

In the preceding sections we presented a series expansion approach to
the calculation of the nonlinear conductivity coefficient b, of weakly non-
linear composites. An effective medium theory was previously devised to
deal with this problem."”-® Both of these methods are based on a perturba-
tion calculation to first order in the nonlinearity,'” which gives b, as the
fourth moment of the local field distribution in a linear composite with the
same Ohmic conductivities and the same microgeometry. They are thus
both valid to first order in the nonlinearity coefficients of the components.
The effective medium theory is a one-shot approximation which is quite
poor in high contrast composites far from the dilute limit.'*’ By contrast,
the approach presented here is a systematic expansion that can in principle
be improved by calculating more terms in the power series.

The calculation of the first term in this expansion does not require any
specific information about the microstructure of the material other than
overall isotropy (or cubic symmetry) and the values of component volume
fractions. However, the calculation of additional terms requires detailed
information about the microstructure. The information needed is of a more
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complicated nature the further we proceed in the expansion. This
microscopic information appears in the calculation in the form of multi-
point microgeometric correlation functions. Thus, a knowledge of the
three-point correlation function is needed for the calculation of the second-
order term, the four-point correlation function is needed for the third-order
term, and so on. This information is usually not available for continuum
composites, but can, in principle, be extracted from micrographs and be.
used in carrying the expansion to higher order.

The independent-bond, simple cubic, random resistor network is a
simple model on which higher order terms of this expansion can be
calculated explicitly: The correlation functions can be evaluated in any
order, and the expansion coefficients can then be calculated numerically
using the discrete dipole—dipole interaction matrix I. The development of
the expansion for the weakly nonlinear conductivity coefficient of such a
network was presented in Section 3 and its first three terms were
calculated. The calculation of higher order terms may prove cumbersome,
although it should be quite straightforward.
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